skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Luan, Qingzu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Aerosol-cloud interactions (ACIs) are vital for regulating Earth’s climate by influencing energy and water cycles. Yet, effects of ACI bear large uncertainties, evidenced by systematic discrepancies between observed and modeled estimates. This study quantifies a major bias in ACI determinations, stemming from conventional surface or space measurements that fail to capture aerosol at the cloud level unless the cloud is coupled with land surface. We introduce an advanced approach to determine radiative forcing of ACI by accounting for cloud-surface coupling. By integrating field observations, satellite data, and model simulations, this approach reveals a drastic alteration in aerosol vertical transport and ACI effects caused by cloud coupling. In coupled regimes, aerosols enhance cloud droplet number concentration across the boundary layer more homogeneously than in decoupled conditions, under which aerosols from the free atmosphere predominantly affect cloud properties, leading to marked cooling effects. Our findings spotlight cloud-surface coupling as a key factor for ACI quantification, hinting at potential underassessments in traditional estimates. 
    more » « less